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We characterized two bacteriophages, ΦFG02 and ΦCO01, 
against clinical isolates of Acinetobacter baumannii and estab-
lished that the bacterial capsule is the receptor for these 
phages. Phage-resistant mutants harboured loss-of-function 
mutations in genes responsible for capsule biosynthesis, 
resulting in capsule loss and disruption of phage adsorption. 
The phage-resistant strains were resensitized to human com-
plement, beta-lactam antibiotics and alternative phages and 
exhibited diminished fitness in vivo. Using a mouse model of 
A. baumannii infection, we showed that phage therapy was 
effective.

A. baumannii is a top priority pathogen requiring urgent 
research and development of new therapeutic strategies1–3, such as 
phage therapy4,5 (expanded background information is presented in 
Supplementary Note 1). We isolated eight bacteriophages against a 
panel of clinical A. baumannii strains. Phages ΦFG02 and ΦCO01 
and their hosts (strains AB900 and A9844, respectively) were cho-
sen for further characterization. Microscopic examination of the 
phages suggested that ΦFG02 belongs to the Myoviridae family, and 
ΦCO01 belongs to the Ackermannviridae family of bacteriophages6 
(Fig. 1a) (complete phage characterization in Supplementary Notes 
2 and 3, Extended Data Fig. 1a–g and Supplementary Fig. 1).

We observed the emergence of phage-resistant mutants when 
co-incubating strains AB900 and A9844 with their respective phages 
ΦFG02 and ΦCO01 (Extended Data Fig. 1f,g and Supplementary 
Fig. 2). We picked a single mutant of strain AB900 that was resistant 
to phage ΦFG02 (ΦFG02-R AB900) and a single mutant of strain 
A9844 that was resistant to phage ΦCO01 (ΦCO01-R A9844), 
and confirmed the phage-resistant phenotype using growth curves  
(Fig. 1b,c) and inverted spotting assays (Supplementary Fig. 2b,c).

Next, we compared the genomes of phage-resistant strains 
against the wild type, and identified a single-nucleotide dele-
tion resulting in a frameshift in a gene within the K locus in both 
strains (Fig. 1d,e). Genes in the K locus of A. baumannii regulate 
the production, modification and export of capsular polysaccha-
rides7,8. In ΦFG02-R AB900, the affected gene was gtr29, which 
codes for a glycosyltransferase, and in ΦCO01-R A9844 it was 
gpi, which codes for the enzyme glucose-6-phosphate isomer-
ase8. Scanning electron microscopy (SEM) analysis suggested that 
the surface of the wild-type strains included a capsule, whereas 
there was no capsule on the surface of the phage-resistant strains  

(Fig. 1f and Supplementary Fig. 3). Defective capsule produc-
tion was confirmed using Maneval’s stain and a quantitative assay 
(Extended Data Fig. 2a–c), and was associated with impaired bio-
film formation (Extended Data Fig. 2f,g). We screened an additional 
24 independently evolved phage-resistant A. baumannii strains and 
determined that loss of capsule occurred in 20 out of 24 of these 
strains (Extended Data Fig. 2d,e). Together, these findings indicate 
a major defect in the overall production of capsule polysaccharides 
in the phage-resistant A. baumannii strains.

To demonstrate that the identified mutations were responsible 
for the phage-resistant phenotype, we disrupted the gtr29 gene in 
AB900 and the gpi gene in A9844. The Δgtr29 AB900 and Δgpi 
A9844 strains were completely resistant to phages ΦFG02 and 
ΦCO01, respectively (efficiency of plating (EOP) = 0%), and com-
plementation restored phage susceptibility (EOP = 100%). Using 
an adsorption assay (Fig. 1g,h) we showed that more than 99% of 
ΦFG02 particles and 97% of ΦCO01 particles adsorbed to their 
respective wild-type hosts. By contrast, there was no phage adsorp-
tion for either the phage-resistant or knockout mutants, and adsorp-
tion was reinstated in the plasmid-complemented strains. Thus  
A. baumannii capsular polysaccharides are the phage receptors for 
ΦFG02 and ΦCO01 and phage resistance arose through alteration 
or loss of these receptors, leading to inhibition of phage adsorption.

Capsules are major determinants of virulence in A. baumannii9,10.  
They have a role in bacterial pathogenesis, enabling A. bauman-
nii to evade components of the host immune response and to 
resist the effects of several antibiotics. We hypothesized that our 
capsule-deficient mutants had become vulnerable to the action of 
various antimicrobial agents. Therefore, we first determined their 
susceptibility profile to nine clinically relevant antibiotics (Fig. 2a; 
raw data of triplicates in Supplementary Table 1). ΦFG02-R AB900 
exhibited a 16× decrease in the minimum inhibitory concentration 
(MIC) of ceftazidime relative to the wild type, becoming clinically 
sensitive to it, and a 2× decrease in the MIC of other beta-lactams 
and the fluoroquinolone ciprofloxacin. ΦCO01-R A9844 exhibited 
a 2× reduction in the MIC of minocycline, meropenem, cefepime 
and ampicillin with sulbactam. For cefepime and ampicillin with 
sulbactam, this resulted in a change of the clinical interpretation 
of the MIC, making A9844 sensitive to these antibiotics. Second, 
using a human serum killing assay, we demonstrated that wild-type 
strains withstood the action of the complement system, whereas 
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phage-resistant mutants did not (Extended Data Fig. 3a). Third, we 
tested the phage-resistant mutants against our phage library and dis-
covered instances of resensitization to phages that the strains were 
originally resistant to (Extended Data Fig. 3b). In summary, acquisi-
tion of phage resistance was accompanied by resensitization11,12 to 
at least three different types of antimicrobial agents. This discovery 
is clinically relevant, as antibiotics, complement and phage all have 
a role in the clinical setting during the treatment of A. baumannii 
infections.

Next, we sought to observe the in vivo fitness of our 
phage-resistant mutants and their ability to invade and survive in 
mammalian hosts9,10,13. Using an established mouse model of bac-
teraemia (Methods), groups of BALB/c mice (n = 4) were infected 
with AB900, A9844 or their phage-resistant counterparts. After 8 h, 
the levels of bacterial colonization were assessed at four sites on the 

body of the mouse. In both strain pairs, we observed a 2-log reduc-
tion of bacterial load in solid organs and a more than 3-log reduc-
tion in blood for phage-resistant mutants, when compared with 
wild-type strains (Fig. 2b,c; Supplementary Note 4).

Finally, to gauge their translational potential, we tested phages 
ΦFG02 and ΦCO01 using the same in vivo model. One hour after 
infection, mice were treated with the corresponding phage at a mul-
tiplicity of infection (MOI) of 1 (n = 4 per group for AB900 with 
ΦFG02, n = 3 per group for A9844 with ΦCO01), or with PBS 
(untreated control). The length of follow-up was determined by 
the welfare of the control group, and was 12 h for AB900 and 8 h 
for A9844. Samples retrieved from phage-treated mice had signifi-
cantly lower levels of bacteria than untreated mice, with ΦCO01 
demonstrating stronger antibacterial activity (Fig. 2d,e, left and 
middle box plots). Furthermore, phage replication in vivo was  
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Fig. 1 | Bacteriophages, phage-resistant mutants and mechanism of phage resistance. a, Phage morphology of ΦFG02 and ΦCO01 visualized by 
transmission electron microscopy (TEM). b,c, Growth curves of wild-type (WT; red) and phage-resistant mutant (blue) A. baumannii in the presence of 
ΦFG02 (b) and ΦCO01 (c) at an MOI of 1. Data are mean ± s.d. (n = 3). OD600, optical density at 600 nm. d,e, Mutations identified in ΦFG02-R AB900 
(d) and ΦCO01-R A9844 (e) are found in the K locus and are associated with the phage-resistant phenotype. Numbers represent nucleotide position 
in the genes, box colours represent different nucleotides. Blank, deletion; yellow, stop codon. f, Cell surface appearance visualized by SEM suggests 
reduced capsule production in the phage-resistant (Φ-R) mutants (additional images in Supplementary Fig. 4). g,h, Phage adsorption assay on AB900 
(g) and A9844 (h). Wild-type and plasmid-complemented (shades of red) and phage-resistant and knockout (shades of blue) mutant strains. Data are 
mean ± s.e.m. (n = 3).
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confirmed for ΦCO01 and suspected for ΦFG02 (Fig. 2d,e, right 
box plots and Supplementary Note 5; data by body site are presented 
in Supplementary Fig. 4).

In summary, we characterized ΦFG02 and ΦCO01, two phages 
that infect A. baumannii (further discussion in Supplementary  
Note 6). Despite the strong lytic activity of these phages, we 
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Fig. 2 | Antibiotic resensitization and in vivo assays. a, The MICs of 9 antibiotics measured using the microbroth-dilution method with the median (n = 3) 
of the log2 change in MIC between the wild type and phage-resistant strains and the clinical interpretation of the MIC shown. S, sensitive; I, intermediate; 
R, resistant. Antibiotics: AMK, amikacin; CFZ, ceftazidime; CIP, ciprofloxacin; FEP, cefepime; GEN, gentamicin; IPM, imipenem; MEM, meropenem; MIN, 
minocycline; and SAM, ampicillin with sulbactam. b,c, In vivo fitness is reduced in phage-resistant A. baumannii AB900 (b) and A9844 (c) mutant strains. 
Bacterial burdens of wild-type and phage-resistant A. baumannii, per body site, at 8 h after infection, normalized by tissue weight. Each point represents 
data from one mouse (n = 4; two-tailed Mann–Whitney test, P = 0.0286 for all comparisons except kidney in A9844 (P = 0.0571)). d,e, Phages ΦFG02 (d) 
and ΦCO01 (e) are effective against A. baumannii in vivo. Mice were treated with either phage or PBS. Box plots show bacterial burdens in untreated (left, 
red), and phage-treated (middle, purple) mice, as well as active phage particles (right, grey) in treated mice, normalized by tissue weight. In box plots, the 
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observed the rapid emergence of phage-resistant mutants in vitro. 
Phage-resistant strains harboured loss-of-function mutations in 
genes of the K locus, which are responsible for the biosynthesis 
of capsular polysaccharides. Using genetic engineering, we con-
firmed that disruption of gtr29 in AB900 and gpi in A9844 led to 
phage resistance in these strains. We demonstrate that capsule loss 
in phage-resistant A. baumannii is associated with a reduction in 
biofilm formation, resensitization to antimicrobial agents includ-
ing antibiotics, human complement and phages, and a reduction in 
fitness in a mouse model of bacteraemia. Finally, we preliminarily 
gauged the translational potential of phages ΦFG02 and ΦCO01 by 
observing their bactericidal activity in vivo.

Methods
Bacterial strains and plasmids. Supplementary Tables 2 and 3 contain a list of 
strains, plasmids and genomes used in this study.

Phage isolation and purification. Phages were isolated from raw sewage 
samples. Aliquots of sewage were combined with overnight cultures of up to three 
bacterial strains, and supplemented with 10× LB and 10 mM CaCl2 and MgSO4. 
Mixtures were incubated overnight and the resulting lysates were purified with the 
previously described Phage-on-Tap protocol14.

Transmission electron microscopy. Ten-microlitre droplets of phage suspension 
were placed on copper TEM grids (200 mesh; SPI) with carbon-coated ultrathin 
formvar film15. They were left for 30 s and then dried using filter paper. Negative 
staining was performed with a uranyl acetate water solution (1% w/v) and the grids 
were examined under a transmission electron microscope (JEM-1400 Plus) at an 
accelerating voltage of 80 kV.

Phage adsorption assay. Bacteria from overnight cultures and phages from 
pure lysates were mixed at an MOI of 0.01 (inoculum of 108 colony-forming 
units (c.f.u.) per ml) in LB. The suspensions were incubated at 37 °C with 
aeration. At each time point, samples of the suspensions were transferred into 
chloroform-saturated PBS, vortexed, and then centrifuged at 3,500g for 3 min. 
The supernatant was diluted in PBS and plated in duplicate for quantification of 
free phage particles.

Isolation of phage-resistant A. baumannii mutants. Following the same principle 
as the spot assay, 25 μl aliquots of pure lysate (concentration > 108 plaque-forming 
units (p.f.u.) ml−1) were spotted onto bacterial lawns. After an overnight 
incubation, bacterial colonies growing in the middle of lysis zones were picked 
and streaked onto LB agar plates for two rounds of single-colony isolation. The 
phage-resistant phenotypes were confirmed using three methods: inverted spot 
plate assays16, standard soft-agar overlay assays, and in vitro growth curves.

Extraction of bacterial genomic DNA, sequencing and bacterial genome 
comparison. The GenElute Bacterial Genomic DNA Kit protocol (Sigma-Aldrich) 
was used for DNA extraction. Sequencing was performed using the Illumina HiSeq 
150 bp paired-end platform (Genewiz). The genomes of AB900, A9844 and their 
phage-resistant counterparts, were independently assembled from these reads and 
compared with the pipeline described in Supplementary Methods.

Gene knockout and complementation. Supplementary Table 4 contains the 
primers used in this section of the study. Genes of interest were disrupted and 
complemented back using a variation of the methods described previously17. 
Further details are provided in Supplementary Methods.

SEM for capsule observation. A 20-μl droplet of five-times PBS-washed bacterial 
suspension was placed onto a fresh gold-coated silicon wafer and the cells were 
allowed to settle for 5 min, followed by washing with PBS. The wafer was then 
placed in 2.5% glutaraldehyde in PBS for 15 min, washed with deionized  
water and dehydrated by immersing in increasing concentrations of ethanol for 
3 min each. Residual ethanol was removed with a critical-point dryer CPD 030 
(BAL-TEC). The sample was mounted on a standard metal SEM stub and then 
coated with an approximately 10-nm-thick gold layer using a sputter coater (SCD 
005; BAL-TEC). The samples were examined under high vacuum in the FE-SEM 
ThermoFisher Elstar G4 at an accelerating voltage of 2 kV, in secondary electron 
mode, with a working distance of 4 mm, operating in immersion mode with the 
through lens detector.

Antibiotic susceptibility assay. MICs of nine antibiotics were assessed using the 
microbroth-dilution protocol as previously described18 and interpreted using the 
cut-off values from the Clinical and Laboratory Standard Institute19. The antibiotics 
tested were amikacin, ceftazidime, ciprofloxacin, cefepime, gentamicin, imipenem, 
meropenem, minocycline and ampicillin + sulbactam.

Mouse experiments and ethics. Three to four female, 6- to 10-week-old BALB/c 
mice were used per group. The sample size was selected on the basis of ethics 
considerations, and was sufficient to support the research hypotheses. Mice were 
randomly allocated to the different experimental groups and, due to the small scale 
of the experiment, no blinding procedures were performed. Bacterial inoculums of 
either wild-type or phage-resistant A. baumannii were prepared to a concentration 
of 106 c.f.u. in 100 μl PBS. Before administration, the bacterial suspensions were 
mixed in a 1:1 ratio with 6% porcine stomach mucin (Sigma-Aldrich) in PBS, 
for a total volume of 200 μl, and mice were injected intraperitoneally. Treatment 
consisted of intraperitoneal injection of either phage suspensions in PBS at an 
MOI of 1, PBS alone, or no treatment (for the bacterial fitness assays). Mice 
were followed for up to 12 h, with the end point decided on the basis of animal 
wellbeing in any of the groups being compared. At the humane end point, blood 
was extracted through cardiac puncture and a laparotomy was performed to obtain 
a section of the liver, right kidney and spleen. The organs were weighed and then 
homogenized in PBS. Blood and organ suspensions were then serially diluted in 
PBS for c.f.u. quantification. In mice that received phage treatment, the blood 
and organ suspensions were pelleted by centrifugation, and the supernatant was 
serially diluted and plated with the soft-agar overlay assay for p.f.u. quantification. 
All protocols involving mice were reviewed and approved by the AMREP Animal 
Ethics Committee (Project ID: E/1689/2016/M) and complied with the National 
Health and Medical Research Council guidelines. Mice were housed at the Monash 
Animal Research Facility, Monash University.

Statistics and reproducibility. Results from TEM, SEM, capsule staining and 
phage plaque morphology are representative of at least 100 observations (single 
cells, phage virions, microscopy fields and plaques, respectively).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The genetic sequences acquired during this study have been deposited into the 
National Center for Biotechnology Information database as a BioProject under 
accession number PRJNA608808. The project contains data for A. baumannii 
strains AB900 (accession number SAMN14483301), A9844 (accession number 
SAMN14483302), ΦFG02-R AB900 (accession number SAMN14511297) and 
ΦCO01-R A9844 (accession number SAMN14511298). Phage genomes were 
independently submitted on GenBank (ΦFG02 accession number MT648818 and 
ΦCO01 accession number MT648819). Source data are provided with this paper.

Code availability
The study did not involve the creation of novel code for bioinformatics analyses. 
All the used software is freely accessible and is referenced in the Supplementary 
Information.
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Extended Data Fig. 1 | Characterization of Acinetobacter baumannii-specific phages. a, Host range of the eight A. baumannii-specific phages isolated in 
this study. Bacterial strains are ordered by the core-genome alignment phylogenetic tree on the left. Productive infection is defined as lysis on a spot assay 
and production of plaques on a soft agar overlay, whereas non-productive infection is defined as lysis on a spot assay with no plaques on a soft overlay 
agar. Efficiency of plating (EOP) is reported as a percentage compared to the host of isolation. b,c, Plaque morphology of phage øFG02 on host AB900 
and øCO01 on host A9844, showing the central clearings or lysis zones surrounded by hazy halos. Scale bars: 1 cm. d,e, One-step killing curves of phages 
øFG02 and øCO01 on their hosts of isolation. Latency time was measured from the beginning of the experiment to when the curve at exponential growth 
reached the initial phage inoculum, whereas burst size was calculated by dividing the maximum free phage count after bacterial burst by the initial phage 
titer in the experiment. Data are mean ± s.e.m. (n = 3). f,g, Growth curves of A. baumannii strains AB900 and A9844 with and without phages. Phages 
were applied at two different multiplicities of infection (1 and 0.1). Lytic activity of phages is shown by the drop in optical density shortly after initiation of 
the bacterial exponential growth phase; and emergence of phage resistance is shown after 6 h of incubation. Data are mean ± s.d. (n = 3). OD600, optical 
density at 600 nm.
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Extended Data Fig. 2 | Reduced capsule and biofilm production in phage-resistant mutants. a, Microscopic inspection of capsule thickness in slides 
stained using the Maneval’s technique. Scale bars: 10 μm. b, Standard curve for the phenol-chloroform capsule quantification assay, calibrated with 
carbohydrate standards ranging from 0 to 300 μg/ml. OD490, optical density at 490 nm. c, Production of capsule polysaccharides (n = 3), for AB900 vs. 
øFG02-R AB900: 79 ± 1.7 μg/ml vs. 35.6 ± 8.8 μg/ml (mean ± s.d.), P = 0.001; and for A9844 vs. øCO01-R A9844: 179.9 ± 15.6 μg/ml vs. 58.1 ± 5.6 
μg/ml; P = 0.0002. d,e, Repeatability of phage-resistance evolution was assessed by measuring capsule production of twelve independently-evolved 
phage-resistant strains from each of the wild type hosts (AB900 and A9844). Violin plots (n = 3) of surface polysaccharides produced by each strain 
compared between the wild type host and each of the additional phage-resistant mutants. f,g, Biofilm production on a polystyrene surface at 48 h, 
measured by absorbance of crystal-violet stained and ethanol-solubilized biofilm (n = 3); optical density of biofilm 1 ± 0.1 vs. 0.5 ± 0.1 (mean ± s.d.),  
P = 0.0038, for AB900 vs. øFG02-R AB900; and 1.3 ± 0.2 vs. 0.4 ± 0.03, P = 0.001, for A9844 vs. øCO01-R A9844. For panels C, D, E and G, wild type 
strains represented in red and (original) phage-resistant mutants in blue, bars represent medians, each point represents the average from three technical 
replicates, and P values pertain to unpaired t tests, two-tailed. ** = P < 0.005; n.s. = non-significant.
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Extended Data Fig. 3 | Further resensitization of phage-resistant A. baumannii to antimicrobials. a, Human serum killing assay. Freshly-thawed human 
serum was inoculated with 105 CFU ml–1 of A. baumannii, and the change in bacterial load was measured at regular intervals. Wild type strains (shades of 
red) grew in serum whereas phage-resistant strains (shades of blue) were rapidly killed. Data are mean ± s.e.m. (n = 3). b, Expanded phage host range 
map of the A. baumannii-specific phage library against øFG02-R AB900 and øCO01-R A9844 reveals sensitization to additional phages. Efficiency of 
plating (EOP) is reported as a percentage compared to the host of isolation.
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